

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

Synthesis, Ion Exchange Properties, and Applications of Amorphous Cerium(III) Tungstosilicate

R. Yavari^a; S. J. Ahmadi^a; Y. D. Huang^b; G. Bagheri^a

^a Nuclear Science and Technology Research Institute, Nuclear Science Research School, Tehran, IRAN

^b Polymer Materials and Engineering Division, Department of Applied Chemistry, Faculty of Science, Harbin Institute of Technology, Harbin, Peoples Republic of China

To cite this Article Yavari, R. , Ahmadi, S. J. , Huang, Y. D. and Bagheri, G.(2008) 'Synthesis, Ion Exchange Properties, and Applications of Amorphous Cerium(III) Tungstosilicate', *Separation Science and Technology*, 43: 15, 3920 — 3935

To link to this Article: DOI: 10.1080/01496390802215024

URL: <http://dx.doi.org/10.1080/01496390802215024>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

Synthesis, Ion Exchange Properties, and Applications of Amorphous Cerium(III) Tungstosilicate

R. Yavari,¹ S. J. Ahmadi,¹ Y. D. Huang,² and G. Bagheri¹

¹Nuclear Science and Technology Research Institute,
Nuclear Science Research School, Tehran, IRAN

²Polymer Materials and Engineering Division, Department of
Applied Chemistry, Faculty of Science, Harbin Institute of Technology,
Harbin, Peoples Republic of China

Abstract: A novel heteropolyacid-based cation exchanger cerium(III) tungstosilicate was synthesized in amorphous form by mixing tungstosilicic acid (TSA) solutions to cerium(III) nitrate solutions at different Ce:TSA ratios. The materials were precipitated from the liquid phase by raising the pH of the solutions using sodium hydroxide. The produced ion exchange powders were characterized using powder X-ray diffractometry, thermogravimetry, infrared spectrometry, inductively coupled plasma and atomic absorption elemental analysis. The materials which were dried at 50°C were found to be stable in water, dilute acids, alkaline solutions, and high temperature up to 1000°C. The Ion exchange properties of the synthesized samples were studied by measuring the distribution coefficients (K_d) for 29 metal ions in demineralized water and nitric acid media. On the basis of K_d values, some quantitative separations such as Co^{2+} - Pb^{2+} , Cr^{3+} - Zr^{4+} , and Mo^{6+} - W^{6+} are achieved on their columns.

Keywords: cerium(III) tungstosilicate, distribution coefficients, heteropolyacids, inorganic ion exchanger, separation

Received 8 October 2007; accepted 10 March 2008.

Address correspondence to R. Yavari, Nuclear Science and Technology Research Institute, Nuclear Science Research School, P.O. Box 11365/8486, Tehran, Iran. Fax: +98-2182064355. E-mail: ryavari@aeoi.org.ir

INTRODUCTION

Since the classical work of Amphelt, a great deal of interest has been taken on synthesis and characterization of new inorganic ion exchangers due to their excellent high selectivity with respect to a certain element or group of elements, good kinetics of sorption, high chemical stability, resistance to oxidation, good mechanical properties and stability at elevated temperature (1–5). The development of inorganic ion exchangers to take advantage of its properties in the removal and separation of heavy toxic metal ions such as chromium, lead, copper, iron and cobalt from aqueous media (which are generated into public sewages, rivers, sea and on land owing to the increasing use of them in many industries) is always of interest.

The different types of inorganic ion exchangers and their applications in diverse fields have been described in detail in a book by Clearfield (2). Amongst these materials, hydrous oxides, salts of heteropolyacids, and insoluble ferrocyanides are worthy of mention (6–8) and heteropolyacids-based inorganic ion exchangers are the most important classes of these materials that have been reported in the literatures (9–19). These types of materials exhibit improved properties over the simple salt of the metals and other conventional inorganic ion exchanger. One of the outstanding features of these materials is that the selectivity may be enhanced by varying the composition of the ion exchange materials (17).

Cerium based ion exchangers are known to be stable thermally and to possess good ion exchange capacity in a comparative study under identical conditions of synthesis (20,29). Also among the inorganic ion exchanger compounds, which have been used by rare earth elements in their structures, the cerium element has gained much attention due to its high relative abundance of cerium in comparison with other rare earth elements (5,30,31), so the synthesis of a new inorganic ion exchanger based on cerium is worthwhile.

Some insoluble acid salts based on cerium such as silicate, selenite, molybdate, tungstate, antimonite, vanadate, arsenite, hydrous oxide and molybdophosphate have been reported (10,20–29). However, no studies have been made on cerium tungstosilicate ion exchanger in this field in the literature.

In continuation of our work on the development of inorganic ion exchangers (10,11), in this paper we present the synthesis, ion exchanger behavior, characterization, chemical stability and analytical application of cerium(III) tungstosilicate.

EXPERIMENTAL

Chemical and Reagents

All the chemicals and reagents used were of Analytical Grade obtained from E. Merck or Fluka.

Apparatus

Bruker Spectrometer (Vector 22) was used for IR studies. pH measurements were made with a Schott CG841 pH-meter (Germany). Thermo-gravimetric analysis was performed on a thermobalance (PL-STA 1500, PL Thermal Science). The quantitative determinations of inorganic ions were carried out using an inductively coupled plasma ((ICP) Varian Turbo Model 150-Axial Liberty) and atomic absorption spectrometer (AAS Model, Spectra AA-220 Varian). X-ray diffraction studies were made with a Philips diffractometer (model PW 1130/90) and Waterbath shaker (model CH-4311, Infors AG) was used in determination of distribution coefficients of elements.

Synthesis of Cerium(III) Tungstosilicate

Three samples of cerium(III) tungstosilicate were synthesized by adding gradually tungstosilicic acid (TSA) solutions to cerium(III) chloride solutions under varying conditions given in Table 1. While the reaction mixture was thoroughly stirred with a magnetic stirrer at room temperature (20°C), the pH of system was increased slowly by adding NaOH to desired final pH for completion of precipitation formation. The solution mixture was stirred for 30 minutes and was then refluxed at 85–90°C for 24 hours. The resulting precipitate was decanted and washed five times with demineralized water, filtered by suction and dried at 50°C for 24 hours. Finally to obtain the samples into H⁺ form, they were soaked in 0.1 M nitric acid, rewashed by demineralized water in order to remove the excess of acid and was again dried at 50°C.

Determination of Ion Exchange Capacity (IEC)

The ion exchange capacity of each sample was determined by the column process taking 1 g of ion exchanger samples (in H⁺ form) into a column

Table 1. Synthesis and properties of cerium tungstosilicate

Sample No.	code	Conditions of synthesis			Properties	
		Concn. of reagents ^a (M)	Mixing volume ratio, Ce:TSA	Final pH	Composition molar ratio Ce:W:Si	Cation-Exchange Capacity (meq/g)
1	CTS-11	0.025	1:1	6.2	11.92, 53.28, 10.00	0.48
2	CTS-21	0.025	2:1	5.6	12.40, 49.10, 9.08	0.42
3	CTS-31	0.05	2:1	4.8	12.99, 48.00, 8.52	0.35

pH = pH of the reaction mixture; meq/g = ion exchange capacity as milliequivalent per gram of the ion exchanger.

^asolution of Cerium(III) Chloride and tungstosilicic acid (TSA).

with a glass wool support, 100 mL of 1 M KCl solution was used as eluant, maintaining a very slow flow rate (0.2 mL/min). The effluent was titered against a standard NaOH solution to determine the total H⁺ ions released. Table 1 shows the ion exchange capacity values of samples.

Composition

250 mg portions of each sample were dissolved after heating in 50 mL hot 4 M NaOH and after separation, the residue was dissolved in 20 mL 3 M HNO₃ solution by heating. Both the solutions were diluted and their elements were determined by inductively coupled plasma and atomic absorption spectrometer (32).

Distribution Coefficients

The distribution coefficients (K_d) for different metal ions were determined in aqueous solution by batch operation (33). 200 mg of ion exchangers in H⁺ form were kept in 20 mL of 1.2 × 10⁻⁴ M metal ion solution at 25°C ± 1°C for 5 hours, with intermittent shaking to attain equilibrium. Blank solutions were prepared without the ion exchanger, having the same concentration of metal ions. This solution was treated in the same way as above. The solution was then filtered and metal ions were determined using ICP or AAS methods (32). The K_d values were calculated by

the following equation;

$$K_d = [(I - F)/F] \cdot V/W(mLg^{-1})$$

Where I and F are the initial and final concentration (ppm) of metal ions in the solution phase, V is volume of initial solution in mL, and W is the dry mass of the ion exchanger in grams. Standard deviation for K_d values were checked by two determinations and were <10%.

Chemical Stability

The chemical stability of the samples was assessed in two mineral acids (HCl and HNO₃), sodium hydroxide base and organic solvents such as ethanol, methanol, acetone, ether. A 50 mg (dry mass) amount of each inorganic ion exchanger were placed in 20 mL of the solvent of interest and kept for 24 hours with continues shaking at room temperature samples. When heated in conc. HNO₃ or aqua regia or 4 M NaOH solution for more than 20 minutes, they dissolve. The metal ions released from the ion exchangers were analyzed with ICP spectrometry. Detailed quantitative studies on the stability of the exchangers were made as reported earlier (34) in different solutions and the results are given in Table 3.

Infrared Absorption Spectra

Infrared spectra of samples were measured by the standard KBr disk method. The spectrum of sample CTS-31 in H⁺ form is shown in Fig. 1.

Thermogravimetric Studies

The thermal analysis was performed with cerium(III) tungstosilicate samples in H⁺ form. A 20-mg (dry mass) amount of each sample was analyzed for TGA with sample holder made up Al₂O₃ in atmosphere of N₂ at flow rate of 50 mL/min. The heating rate was maintained at 10°C/min. Each analysis was done by heating the samples up to 1000°C. The thermogram for sample CTS-31 in H⁺ form is given in Fig. 2.

X-Ray Analysis

X-ray powder diffraction method using nickel-filtered Cu-K_α radiation at 298 K was used for X-ray studies of samples in H⁺ form. The study was done between 4 and 75° 2θ values with step size of 0.05. XRD spectrum of CTS-31 is given in Fig. 3.

Table 2. Distribution coefficients of elements on cerium tungstosilicate: K_d value (ml/g) for different sample

Species	DMW	Samples					
		CTS-11		CTS-21		CTS-31	
		0.001 M HNO ₃	0.1 M HNO ₃	DMW	0.001 M HNO ₃	0.1 M HNO ₃	DMW
Ba(NO ₃) ₂	2478	862	69	3515	691	91	1178
Sr(NO ₃) ₂	493	152	9	1215	180	17	322
Co(NO ₃) ₂	53	21	N.A.	187	111	N.A.	99
Cu(NO ₃) ₂	960	580	8	926	498	12	477
Pb(NO ₃) ₂	4150	2915	18	>10 ⁴	8017	7	5431
BiONO ₃	3300	2700	145	1701	1504	81	624
TlNO ₃	4926	3559	21	4039	2819	109	2010
In(NO ₃) ₃	334	259	12	2015	1859	49	891
Cr(NO ₃) ₃	134	21	N.A.	1067	818	36	1587
Na ₂ CrO ₄	N.A.	N.A.	38	N.A.	N.A.	38	32

(Continued)

Table 2. Continued

Species	Samples							
	CTS-11				CTS-21			
	DMW	0.001 M HNO ₃	0.1 M HNO ₃	DMW	0.001 M HNO ₃	0.1 M HNO ₃	DMW	0.001 M HNO ₃
(NH ₄) ₆ Mo ₇ O ₂₄	198	91	5	334	217	24	401	330
Na ₂ WO ₄	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	45
Th(NO ₃) ₄	1930	1294	83	364	61	12	439	N.A.
UO ₂ (NO ₃) ₂	956	374	34	347	107	9	394	124
Zn(NO ₃) ₂	400	289	29	546	352	17	281	169
Cd(NO ₃) ₂	764	271	9	653	391	3	502	127
ZrOCl ₂	>10 ⁴	>10 ⁴	67	>10 ⁴	2341	49	>10 ⁴	137
HfOCl ₂	>10 ⁴	2950	27	>10 ⁴	244	20	>10 ⁴	1
LiNO ₃	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	7
NaNO ₃	1	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.	N.A.
KNO ₃	86	4	N.A.	27	1	N.A.	21	N.A.
RbCl	299	18	6	220	15	2	159	1
CsNO ₃	604	120	31	671	93	22	477	12
YCl ₃	1029	186	11	3300	309	9	1683	115
La(NO ₃) ₃	750	354	35	2416	529	91	1422	16
Ce(NO ₃) ₃	950	390	79	886	451	61	1867	115
Nd(NO ₃) ₃	861	556	21	3978	3015	55	3019	260
Sm(NO ₃) ₃	680	391	10	2397	1945	24	1721	6
Dy(NO ₃) ₃	871	390	48	2574	1892	101	1024	186
							931	186
							1206	33
							1612	109
							1024	6
							1200	25

Table 3. Chemical stability of cerium tungstosilicate in different solutions; (Weight dissolved (mg) from 50 mg)

No.	Solvent (M)	CTS-11			CTS-21			CTS-31		
		Ce (mg)	W (mg)	Si (mg)	Ce (mg)	W (mg)	Si (mg)	Ce (mg)	W (mg)	Si (mg)
1		0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
2	HCl	0.5	4.18	4.37	0.86	4.20	7.72	0.80	4.85	8.63
3		1	4.98	5.00	0.94	4.71	10.25	0.86	5.11	11.38
4		4	6.14	5.87	1.12	6.07	10.48	0.93	6.52	11.62
5	HNO ₃	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
6		0.5	4.23	4.89	0.72	4.42	8.59	0.61	4.66	9.42
7		1	5.30	7.74	0.73	4.94	9.17	0.62	5.37	12.28
8		4	5.96	7.88	0.79	5.95	10.96	0.68	6.37	12.69
9	NaOH	0.1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
10		0.5	0.00	28.91	1.82	0.00	28.56	1.58	0.00	28.37
11		1	0.00	29.11	2.22	0.00	29.39	2.08	0.00	29.70
12		4	0.00	29.57	4.05	0.00	29.85	3.74	0.00	29.93

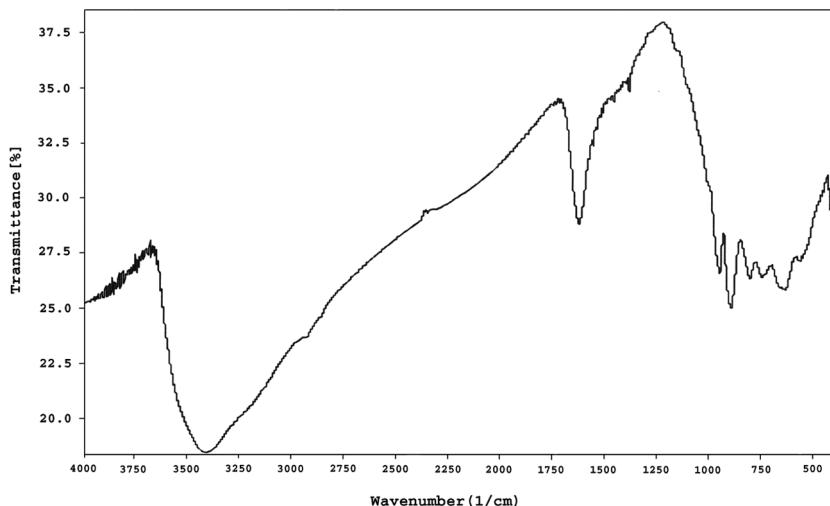


Figure 1. Infrared spectrum of cerium(III) tungstosilicate (CTS-31).

Binary Separation of Metal Ions

Important quantitative separations of metal ions were performed on column of titanium cerium(III) tungstosilicate. A 0.5 gram amount (dry mass) of CTP in H^+ form (mesh size 50–100 mm) was placed in glass

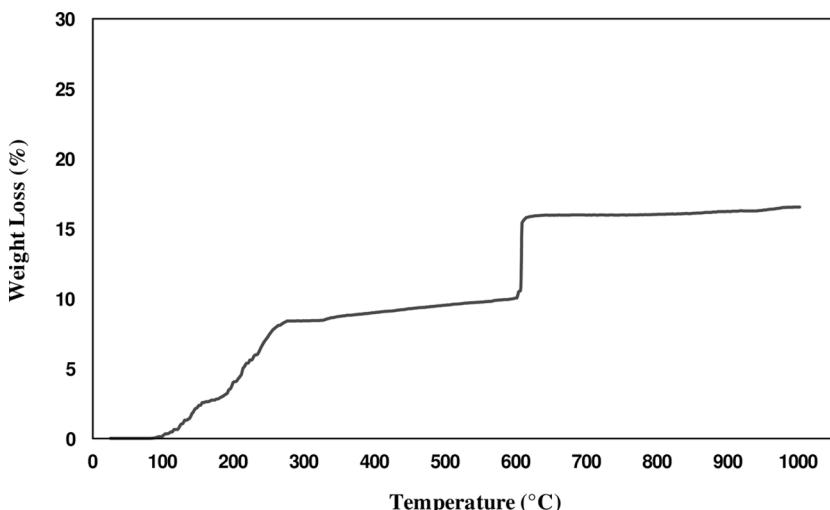


Figure 2. Thermogram of cerium(III) tungstosilicate (CTS-31).

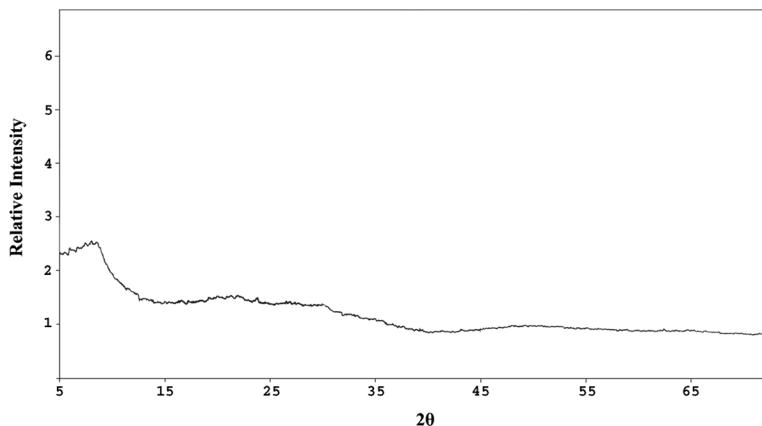


Figure 3. XRD spectrum of cerium(III) tungstosilicate (CTS-31).

column of inner diameter 6 mm with a glass wool support at the bottom. The column was washed thoroughly with demineralized water and the mixture of the two metal ions (Table 4) to be separated was then loaded by passing the mixture through the column at slow rate (maintaining a flow-rate of 0.18 ml/min). The column was washed with demineralized water so that the metal ions, which were not exchanged, could be removed. The metal ions adsorbed on the exchanger were then eluted with 0.1 M HNO₃ or NH₄Cl. The flow-rate of effluent was maintained at 0.18 ml/min until the metal ions were completely eluted out of the column. The effluents were collected in 2-ml fractions and determined by ICP or AAS in mind, the metal ion solutions were either concentrated or diluted as required so as to ensure detection.

Table 4. Separation of metal ions on cerium tungstosilicate at room temperature

No.	Metal ions separated	Amount loaded(µg)	Amount found(µg)	Total elution volume (ml)	Eluent used	The type of ion exchanger
						CTS-31
1	W	460	460	42	H ₂ O	CTS-31
	Mo	240	235	106	0.1 M NH ₄ Cl	
2	Cr	130	130	14	H ₂ O	CTS-31
	Zr	228	225	18	0.1 M HNO ₃	
3	Co	147	147	16	H ₂ O	CTS-11
	Pb	518	518	18	0.1 M HNO ₃	

RESULTS AND DISCUSSION

The condition used for the preparation of the inorganic ion exchanger has considerable effect on the degree of hydration and the composition of the exchanger. These two factors are responsible for the shape and size of cavities inside the ion exchanger and for other properties of the exchanger resulting in unusual ion exchange behaviors (4,5,35). Three different samples of cerium(III) tungstosilicate have been prepared under varying conditions (Table 1). The result shows that the molar composition of cerium(III) tungstosilicate was found as Ce:W:Si about 1:4.5:1, which shows that anionic part is higher than cationic one. As it was observed earlier table 1 that anionic part contributed toward ion exchange capacity for this cation exchanger. Therefore, cerium(III) tungstosilicate showed relatively good ion exchange capacity.

The infrared spectrum of cerium(III) tungstosilicate is recorded in Fig. 1. On the basis of IR data, we can say that the peak between 2900 and 3500 cm^{-1} with the maximum at 3400 cm^{-1} is attributed to interstitial water molecules and OH groups while a sharper peak at 1600 cm^{-1} is probably due to the deformation vibration of free water molecules. The presence of several low and mid intensity bands in the region of $500\text{--}1000\text{ cm}^{-1}$ corresponds to metal-oxygen bonds, presumably in a polymeric compound (36,37), while the band at 900 cm^{-1} may be due to Si-O stretching vibration in cerium(III) tungstosilicate (38). This suggests that cerium tungstosilicate and tungstosilic acid are quite different from each other regarding their structures.

The thermogram for sample CTS-31 recorded in Fig. 2 implies that the weight loss of the ion exchanger up to 280°C is due to the removal of free external water molecules. At higher temperatures ($280\text{--}590^\circ\text{C}$), the gradual loss in weight (2%) is attributed to loss of coordinated water and hydroxyl groups. These losses follow the regular trend of inorganic ion exchangers (39). Further heating of the material from $590\text{--}610^\circ\text{C}$ shows a more weight loss (5%) which is due to the removal of structure water condensation. The curve pattern shows that the ion exchanger is stable up to 1000°C . On the basis of the thermogram pattern recorded here it can be concluded that cerium tungstosilicate ion exchangers are more stable than other cerium ion exchangers (19–21).

Distribution coefficients of 29 metal ions have been studied using batch experiments. Furthermore the nature of the ion exchanger, various factors such as swelling, formation of complexes, nature of the chemical bond and solvent distribution may be responsible for the wide variation in the distribution coefficient values (40). The obtained values for K_d (given in Table 2) in demineralized water and nitric acid media show that the amorphous cerium(III) tungstosilicate is an useful and good cation

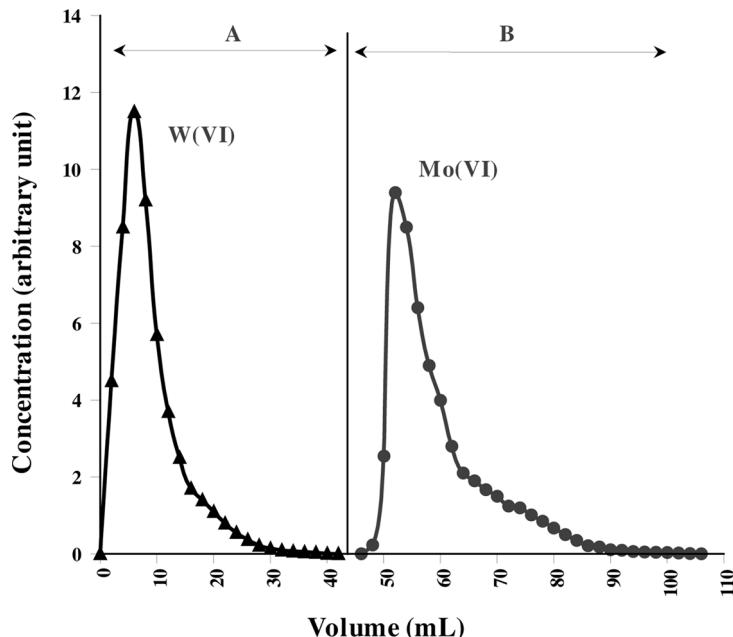
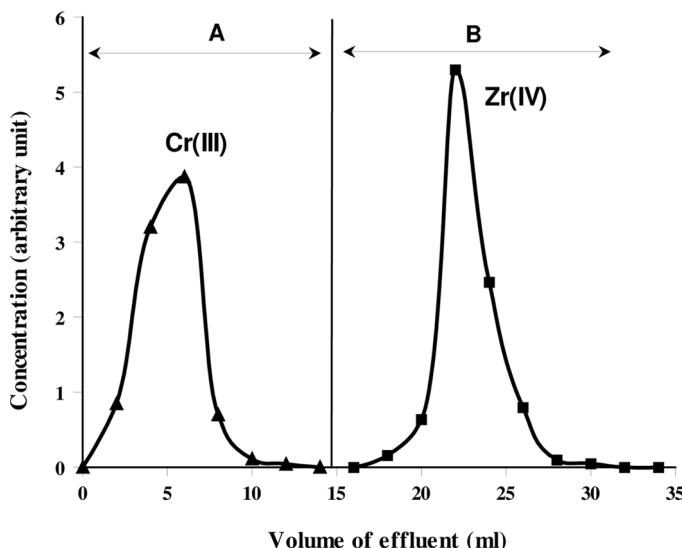
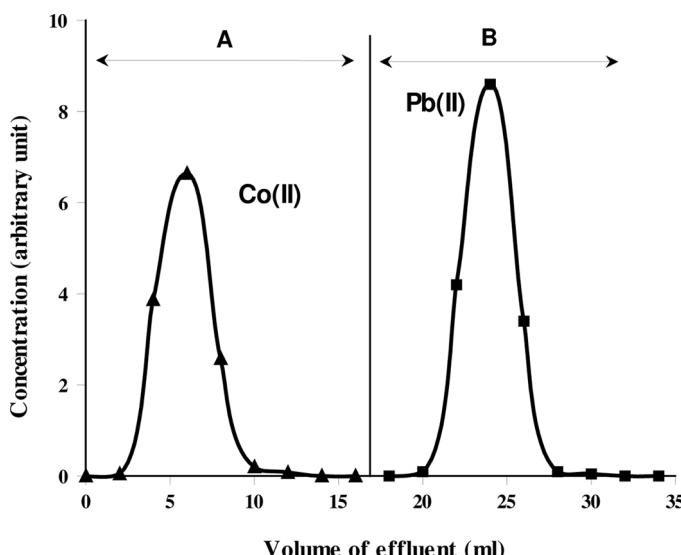


Figure 4. Elution curve of separation of W(VI)-Mo(VI). (a) Demineralized water, (b) 0.1 M NH₄Cl, Flow rate 0.18 mL/m.




Figure 5. Elution curve of separation of Cr(III)-Zr(VI). (a) Demineralized water, (b) 0.1 M HNO₃, Flow rate 0.18 mL/m.

exchanger in the pH range 3–7, showing a high affinity for some cationic elements. It was observed that for most of the metals K_d values decreased with the increase in concentration of nitric acid. Low K_d values of the metal ions in high concentration of nitric acid are due to slower replacement of the metal ions in acidic media and competition of H_3O^+ ions with metal ions as expected.

Based on the K_d values of alkali metal ions in demineralized water, all the samples of cerium(III) tungstosilicate start to exchange the larger alkali metal cations (according to the bare ionic radius) at a pH between 5–6.5 and exhibit the following selectivity sequence.

Sorption behaviors of metal ions show a high selectivity of the elements such as Ba^{2+} , Bi^{3+} , Zr^{4+} , HF^{4+} , and especially Pb^{2+} , that indicating their importance in environmental studies, in demineralized water and 0.001 M nitric acid media. The selectivity determined how efficiently a certain element removed from other elements. On the basis of these data, three separations of metal ion pairs were performed. The separation of Co^{2+} from Pb^{2+} , Cr^{3+} from Zr^{4+} , and Mo^{6+} from W^{6+} have been achieved on the column of this ion exchanger (given in detailed in table 4 and show in Figs. 4–6 as a elution curves). The salient feature of the separation using

Figure 6. Elution curve of separation of $Pb(II)$ - $Co(II)$. (a) Demineralized water, (b) 0.1 M HNO_3 , Flow rate 0.18 mL/m.

the column of amorphous cerium(III) tungstosilicate is the slight tailing which Lead to their sharpness in achieving the separation.

CONCLUSION

An amorphous cation-exchanger cerium(III) tungstosilicate was found to have high chemical and thermal stability, good ion-exchange capacity and selectivity for some toxic metal ions. The differential behavior of the exchanger towards metal ions showed the separation possibilities of metal ions of analytical interest from a given mixture. So this cation exchanger material can be conveniently utilized for the removal and isolation of toxic metal ions, released from the wastewater stream.

REFERENCES

1. Amphlett, C.B. (1964) *Inorganic Ion Exchangers*; Elsevier: Amsterdam.
2. Clearfield, A. (1982) *Inorganic Ion exchange Materials*; CRC press: New York.
3. Abe, M.; Kataoka, T.; Suzuki, T. (1991) *New Development in Ion exchange*; Elsevier: Kodansha, Tokyo.
4. Nikolskii, B.P.; Ramoankov, P.G. (1980) *Ion exchange in Chemical Technology*; Khimia: Moscow.
5. Qureshi, M.; Varshney, K.G. (1991) *Inorganic Ion exchange in Chemical Analysis*; C.R.C. Press: Boca Raton, Florida.
6. Inoue, Y.; Yamazaki, H.; Kasuga, F. (1995) Studies of the hydrous titanium oxide ion exchanger and rate of the isotopic exchange of sodium ions between the exchanger in the Na^+ form and aqueous solution. *Bull. Chem. Soc.*, 68: 191.
7. Mimura, H.; Lehto, J.; Harjula, R. (1997) Ion exchange of cesium on potassium nickel hexacyanoferrate(II). *J. Nucl. Sci. Tech.*, 34 (5): 184.
8. Pekarek, V.; Vesely, V. (1972) Synthetic inorganic ion exchangers-II: Salts of heteropolyacids, insoluble ferrocyanides, synthetic aluminosilicates and miscellaneous exchangers. *Talanta*, 19 (11): 1245.
9. Peacock, R.D.; Weakly, T.J.R. (1971) Heteropolytungstate complexes of the lanthanide elements. Part I. Preparation and reactions. *J. Chem. Soc. A*, 18: 36.
10. Maragheh, M.G.; Waqif-Husain, S.; Khanchi, A.R. (1999) Sorption of radio-nuclides on cerium(IV) molybdochophosphate ion exchanger. *J. Radioanal. Nucl. Chem.*, 241 (1): 139.
11. Yavari, R.; Khanchi, A.R.; Maragheh, M.G.; Waqif-Husain, S. (2006) Sorption of radionuclides on thorium tungstophosphate, a new inorganic ion exchanger. *J. Radioanal. Nucl. Chem.*, 267 (3): 685.
12. Van, J.; Smit, R.; Jacobs, J.J.; Robb, W. (1959) Cation exchange properties of the ammonium heteropolyacid salts. *J. Inorg. Nucl. Chem.*, 12 (1): 95.

13. Siddigi, Z.M.; Pathania, D. (2003) Titanium(IV) tungstosilicate and titanium(IV) tungstophosphate: Two new inorganic ion exchangers. *J. Chromatogr. A.*, 987: 147.
14. Romanelli, G.P.; Autino, J.C.; Blanco, M.N.; Pizzio, L.R. (2005) Tungstosilicate salts as catalysts in phenol tetrahydropyranylation and depyranylation. *Applied Catalysis A*, 295: 209.
15. Dumas, E.; Sevov, S.C. (2002) Synthesis and characterization of $\text{Cs}_5\text{P}[\text{Mo}_4\text{O}_{14}(\text{OH})_2]_2\text{H}_2\text{O}$: A new molybdophosphate cluster with face-sharing MoO_6 octahedral. *Inorg. Chem.*, 41 (1): 144.
16. Tomsa, A.R.; Muresan, L.; Koutsodimou, A.; Falaras, P.; Rusu, M. (2003) Synthesis and characterisation of two new lanthanide sandwich-type heteropolyoxometalates. *Polyhedron*, 22: 2901.
17. Gupta, A.P.; Varshney, P.K. (2000) Studies on a new heteropolyacid-based inorganic ion exchanger: Zirconium(IV) selenomolybdate. *Reac. Funct. Polym.*, 43: 33.
18. Rusu, M.; Marcu, Gh.; Rosu, C. (1999) Uranium(IV) polyoxotungstophosphate. *J. Radioanal. Nucl. Chem.*, 242: 467.
19. Maragheh, M.G.; Waqif-Husain, S.; Khanchi, A.R. (1999) Selective sorption of radioactive cesium and strontium on stannic molybdophosphate ion exchanger. *J. Appl. Radiat. Isot.*, 50 (3): 459.
20. Maragheh, M.G.; Waqif-Husain, S.; Khanchi, Ahmadi, S.J. (1999) Separation of Ions on Columns of Cerium(IV) Silicate. *A New Ion Exchanger. Sep. Sci. Tech.*, 34 (2): 219.
21. Maragheh, M.G.; Waqif-Husain, S.; Khanchi, Ahmadi, S.J. (1996) Sorption studies of radionuclides on a new inorganic ion exchanger: Cerium(III) silicate. *Appl. Radial. Isot.*, 47 (5/6): 501.
22. Waqif-Husain, S.; Maragheh, M.G.; Rasheedzad, A.S. (1984) Synthesis and ion exchange properties of cerium selenite. *J. Radio. Nucl. Chem.*, 84 (2): 239.
23. Lahiri, S.; Roy, K.; Bhattacharya, S.; Maji, S.; Basu, S. (2005) Separation of ^{134}Cs and ^{152}Eu using inorganic ion exchangers, zirconium vanadate and ceric vanadate. *Appl. Radial. Isot.*, 63: 293.
24. Nilchi, A.; Maalek, B.; Khanchi, A.R.; Maragheh, M.G.; Bagheri, A. (2006) Cerium(IV) molybdate cation exchanger: Synthesis, properties and ion separation capabilities. *Radiat. Phys. Chem.*, 75: 301.
25. Gill, J.S.; Tandon, S.N. (1973) Synthesis and ion exchange properties of ceric tungstate. *Talanta*, 20: 585.
26. Aly, H.F.; El-Naggar, I.M. (1998) Synthesis of tetravalent metal antimonates, characterizatics and use in treatment of radioactive waste solutions. *J. Radioanal. Nucl. Chem.*, 228: 151.
27. Janardanan, C.; Nair, S.M.K.; Savariar, C.P. (1989) Studies on inorganic ion exchangers, part 3, preparation, properties, and application of cerium vanadate. *Ind. J. Chem.*, 28A: 693.
28. Janardanan, C.; Madhavanlcutty, S.; Nair; Savariar, C.P. (1988) Studies on inorganic ion exchangers, Part 1: preparation, properties, and application of cerium arsenite. *Analyst*, 113: 1141.

29. De, A.K.; Das, S.K. (1978) Synthetic inorganic ion exchangers, Part VIII: Hydrous cerium oxide, synthesis, properties and ion exchange separation. *Sep. Sci. Tech.*, 13: 465.
30. Kep, D.L. (1973) In: *Comprehensive Inorganic Chemistry*, Bailar, J.C.; Emeleus, H.J.; Nyholm, R.; Dickenson, A.F.T., eds.; Pergamon Press, 4, 607.
31. Pope, M.T.. (1994) In: *Encyclopedia of Inorganic Chemistry*, King, R.B., ed.; John Wiley & Sons, 6, 3361.
32. Winge, R.K.; Fassel, V.A.; Peterson, V.J.; Floyed, M.A. (1985) *Inductively Coupled Plasma Atomic Emission Spectroscopy*; Elsevier Science: Amsterdam.
33. Varshney, K.G.; Agrawal, S.; Varshney, K.; Sharma, U.; Rani, S. (1983) Radiation stability of some thermally stable inorganic ion exchangers. *J. Radiochem. Radioanal. letter*, 58: 141.
34. Qureshi, M.; Waqif-Husain, S. (1970) Synthesis of thorium molybdate and its use for the quantitative separation of iron(III) from zinc(II), cobalt(II), and copper(II). *J. Chem. Soc. (A)*, 1204.
35. Dyer, A.; Hudson, M.J.; Williams, P.A. (1993) *Ion Exchange Processes: Advances and Applications*; Royal Society of Chemistry: London.
36. Waqif-Husain, S.; Rasheedzad, S.; Manzoori, J.L.; Jabbari, J. (1982) Synthesis and ion exchange properties of lanthanum tungstate: A new inorganic ion exchanger. *Sep. Sci. Technol.*, 17 (7): 935.
37. Socrates, G. (1980) *Infrared Characteristic Group Frequencies*; John Wiley & Sons, Ltd.: New York.
38. Lasarev, A.N. (1972) *English Translation Vibrational Spectra and Structure of Silicate*; Consultants Bureau: New York.
39. Qureshi, M.; Gupta, J.P.; Sharma, V. (1973) Synthesis of a reproducible and chemically stable tantalum antimonite. *Anal. Chem.*, 45 (11): 1901.
40. Qureshi, M.; Zebra, N.; Nabi, S.A.; Kumar, V. (1973) Comparative study of titanium(IV)-based exchangers in aqueous and mixed solvent systems. *Talanta*, 20 (7): 609.